View on GitHub

General Information

Oak Ridges Moraine Groundwater Program

Chapman 1991

Original Form

Chapman, T.G., 1991. Comment on the evaluation of automated techniques for base flow and recession analyses, by R.J. Nathan and T.A. McMahon. Water Resource Research 27(7): 1783-1784

\[f_k = \frac{3\alpha-1}{3-\alpha}f_{k-1} + \frac{2}{3-\alpha}\left(y_k - \alpha y_{k-1}\right)\]

set

\[y_k = f_k + b_k\]

into

\[b_k = y_k - \frac{3\alpha-1}{3-\alpha}f_{k-1} - \frac{2}{3-\alpha}\left(y_k - \alpha y_{k-1}\right)\]

set $f_{k-1}=y_{k-1}-b_{k-1}$ and re-arrange

\[b_k = \frac{3\alpha-1}{3-\alpha} b_{k-1} + \left(1- \frac{2}{3-\alpha}\right) y_k + \left(\frac{2\alpha}{3-\alpha} - \frac{3\alpha-1}{3-\alpha}\right)y_{k-1}\] \[b_k = \frac{3\alpha-1}{3-\alpha} b_{k-1} + \left(\frac{1-\alpha}{3-\alpha}\right) y_k + \left(\frac{1-\alpha}{3-\alpha}\right)y_{k-1}\]

where $\alpha=k$, the recession coeficient.

General form

\[b_t = \alpha b_{t-1} + \beta q_t + \gamma q_{t-1}\] \[\alpha = \frac{3k-1}{3-k} \qquad \beta = \frac{1-k}{3-k} \qquad \gamma=\frac{1-k}{3-k}\]